Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis.
نویسندگان
چکیده
The comparative binding energy (COMBINE) methodology has been used to identify the key residues that modulate the inhibitory potencies of three structurally different classes of acetylcholinesterase inhibitors (tacrines, huprines, and dihydroquinazolines) targeting the catalytic active site of this enzyme. The extended set of energy descriptors and the partial least-squares methodology used by COMBINE analysis on a unique training set containing all the compounds yielded an interpretable model that was able to fit and predict the activities of the whole series of inhibitors reasonably well (r2 = 0.91 and q2 = 0.76, 4 principal components). A more robust model (q2 = 0.81 and SDEP = 0.25, 3 principal components) was obtained when the same chemometric analysis was applied to the huprines set alone, but the method was unable to provide predictive models for the other two families when they were treated separately from the rest. This finding appears to indicate that the enrichment in chemical information brought about by the inclusion of different classes of compounds into a single training set can be beneficial when an internally consistent set of pharmacological data can be derived. The COMBINE model was externally validated when it was shown to predict the activity of an additional set of compounds that were not employed in model construction. Remarkably, the differences in inhibitory potency within the whole series were found to be finely tuned by the electrostatic contribution to the desolvation of the binding site and a network of secondary interactions established between the inhibitor and several protein residues that are distinct from those directly involved in the anchoring of the ligand. This information can now be used to advantage in the design of more potent inhibitors.
منابع مشابه
Ligand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease
Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...
متن کاملThe comparison of the effect of different inhibitors on aromatase enzyme effective in the breast cancer by molecular docking method
Background: Aromatase is an enzyme that plays an important role in the development of estrogen-positive breast cancer. Estrogens are essential in human and mainly in women because of their role in sexual development and reproduction. Adverse effects of some aromatase inhibitors increase the need to discover new inhibitors with higher selectivity, lower toxicity and improved potency. In this stu...
متن کامل2-(2-(4-Benzoylpiperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents
Objective(s): Alzheimer’s disease (AD) as progressive cognitive decline and the most common form of dementia is due to degeneration of the cholinergic neurons in the brain. Therefore, administration of the acetylcholinesterase (AChE) inhibitors such as donepezil is the first choice for treatment of the AD. In the present study, we focused on the synthesis and anti-cholinesterase evaluation of n...
متن کاملFragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...
متن کاملFragment-based Binding Efficiency Indices in Bioactive Molecular Design: A Computational Approach to BACE-1 Inhibitors
One of the most important targets in Alzheimer disease is Beta site amyloid precursor protein cleaving enzyme-1 (BACE-1). It is a membrane associated protein and is one of the main enzymes responsible for amyloid β (Aβ) production. Up to now, a considerable number of peptidic and non-peptidic inhibitors of BACE-1 have been developed. Recently, small molecule BACE-1 inhibitors have attracted the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of medicinal chemistry
دوره 47 18 شماره
صفحات -
تاریخ انتشار 2004